

5	PSO 3	Critical thinking:	Ability to employ critical thinking in understanding the concepts in every area of mathematics.	
6	PSO 4	Analytical reasoning:	Ability to analyze the results and apply them in various problems appearing in different branches of mathematics.	
7	PSO 5	Problem solving:	Capability to solve problems using concepts of linear algebra	
8	PSO 5		Capability to solve various models such as growth and decay models, radioactive decay model, LCR circuits and population models using techniques of differential equations.	
9	PSO 5		Ability to solve linear system of equations, linear programming problems and network flow problems.	
10	PSO 5		Ability to provide new solutions using the domain knowledge of mathematics acquired during this programme.	
11	PSO 6	Research-related skills:	Capability for inquiring about appropriate questions relating to the concepts in various fields of mathematics	
12			To know about the advances in various branches of mathematics.	
13	PSO 7	Information/digital literacy		
14	PSO 8	Self-directed learning	Ability to work independently and do in-depth study of various notions of mathematics.	
15	PSO 9	Lifelong learning	Ability to think, acquire knowledge and skills through logical reasoning and to inculcate the habit of self-learning.	
16	PSO 10	Application skills:	Ability to apply the acquired knowledge in all aspects.	
17	PSO 11	Experimental skills		
18	PSO 12	Moral and ethical awareness/reasoning	Ability to identify unethical behavior such as fabrication, falsification or misrepresentation of data and adopting objective, unbiased and truthful actions in all aspects	
COURSE OUTCOMES - COs				
Core Course				
Seme ster	Course code	Course Title	CO No:	Course Outcomes
1	MTS1 B01	BASIC LOGIC \& NUMBER THEORY	CO1	To Prove results involving divisibility, greatest common divisor, least common multiple and a few applications
			CO2	To Understand the theory and method of solutions of LDE.
			CO3	To Solve linear congruent equations.
			CO4	To Learn three classical theorems viz. Wilson's theorem, Fermat's little theorem and Euler's theorem and a few important consequences
			CO1	To introduce students to the fundamental ideas of limit, continuity and differentiability and also to some basic theorems of differential calculus.

| |
| :--- | :--- | :--- | :--- | :--- |

5	MTS5B06	BASIC ANALYSIS	CO3	To understand some basic topological properties of real number system such as the concept of open and closed sets, their properties, their characterization and so on.
			CO4	To get a rigorous introduction to algebraic, geometric and topological structures of complex number system, functions of complex variable, their limit and continuity and so on.
	MTS5B07	NUMERICAL ANALYSIS	CO1	Understand several methods such as bisection method, fixed point iteration method, regula falsi method etc. to find out the approximate numerical solutions of algebraic and transcendental equations with desired accuracy
			CO 2	Understand the concept of interpolation and also learn some well known interpolation techniques.
			CO3	Understand a few techniques for numerical differentiation and integration and also realize their merits and demerits.
			CO4	Find out numerical approximations to solutions of initial value problems and also to understand the efficiency of various methods.
	MTS5B08	LINEAR PROGRAMMING	CO1	To solve linear programming problems geometrically.
			CO2	To Understand the drawbacks of geometric methods.
			CO3	To solve LP problems more effectively using Simplex algorithm .
			CO4	To understand duality theory, a theory that establishes relationships between linear programming problems of maximization and minimization.
			CO5	To understand game theory.
			CO6	To solve transportation and assignment problems by algorithms that take advantage of the simpler nature of these problems
	MTS5B09	INTRODUCTION TO GEOMETRY AND THEORY OF EQUATIONS	CO1	To Understand several basic facts about parabola, hyperbola and ellipse (conics) such as their equation in standard form, focal length properties, and reflection properties, their tangents and normal.
			CO2	To Recognise and classify conics.
			CO3	To Understand Kleinian view of Euclidean geometry.
			CO4	To Understand affine transformations, the inherent group structure, the idea of parallel projections and the basic properties of parallel projections.
			CO5	To Learn to solve polynomial equations upto degree four.
			CO1	Understand several deep and fundamental results of continuous functions on intervals such as boundedness theorem, maximum-minimum theorem, intermediate value theorem, preservation of interval theorem and so on

6	MTS6B12	CALCULUS OF MULTI VARIABLE	CO3	Extend the notion of integral of a function of single variable to integral of functions of two and three variables and address the practical problem of evaluation of double and triple integral using Fubini's theorem and change of variable formula.
			CO 4	Realise the advantage of choosing other coordinate systems such as polar, spherical, cylindrical etc. in the evaluation of double and triple integrals and see a few applications of double and triple integral in the problem of finding out surface area, mass of lamina, volume, centre of mass and so on.
			CO5	Understand the notion of a vector field, the idea of curl and divergence of a vector field, their evaluation and interpretation and learn three major results viz. Green's theorem, Gauss's theorem and Stokes' theorem of multivariable calculus and their use in several areas and directions.
	MTS6B13	DIFFERENTIAL EQUATIONS	CO1	Identify a number of areas where the modeling process results in a differential equation and learn to solve DEs that are in linear, separable and in exact forms and also to analyze the solution.
			CO 2	Realize the basic differences between linear and non linear DEs and also basic results that guarantees a solution in each case.
			CO3	Familiar with the theory and method of solving a second order linear homogeneous and non homogeneous equation with constant coefficients.
			CO 4	Learn to find out a series solution for homogeneous equations with variable coefficients near ordinary points and acquire the knowledge of solving a differential equation using Laplace method which is especially suitable to deal with problems arising in engineering field
			CO5	Learn the technique of solving partial differential equations using the method of separation of variables
	$\begin{aligned} & \text { MTS6B14(} \\ & \text { E01) } \end{aligned}$	ELECTIVE1-GRAPH THEORY	CO1	Understand and apply the fundamental concepts in graph theory and apply graph theory based tools in solving practical problems
			CO 2	Improve the proof writing skills and analyze properties of graphs
			CO3	Understand trees and their properties
			CO4	Distinguish between Eulerian and Hamiltonian graphs and analyze planar graphs
	$\begin{aligned} & \text { MTS6B14(} \\ & \text { E02) } \end{aligned}$	ELECTIVE2- TOPOLOGY OF METRIC SPACES	CO1	To perform simple theoretical analysis involving sets in metric spaces and maps between these spaces.
			CO 2	To perform simple theoretical analysis involving sets in topological spaces and maps between these spaces

			CO3	To apply these concepts to other areas of mathematics.
	MTS6B14(ELECTIVE3MATHEMATICAL PROGRAMMING	CO1	To understand basis of Python programming, apply Python programming in plotting mathematical functions, apply Python programming in numerical analysis
		WITH PYTHON AND LATEX	CO2	To understand typesetting using Latex and apply Latex in writing equations
Open Course				
5	MTS5D01	OPEN COURSE-1 APPLIED CALCULUS	CO1	Compute limits, derivatives and write down the equation of the tangent line
			CO2	Determine whether the function is increasing or decreasing using derivatives and Compute convexity, concavity and points of inflection
			CO3	Determine extreme values and Sketch curves
			CO4	Compute the area under a curve, average value of a function using integrationand compute anti derivative.
	MTS5D02	OPEN COURSE- 2 DISCRETE MATHEMATICS FOR BASIC AND APPLIED SCIENCE	CO1	Identify correct and incorrect arguments and the criteria for the evaluation of arguments
			CO2	Understand the concept of groups and derive basic theorems on groups
			CO3	Define the concept of Boolean algebra as an algebraic structure and list its properties
			CO4	Define a Graph and identify different classes of graphs and various applications of Graph theory
	MTS5D03	OPEN COURSE- 3 LINEAR MATHEMATICAL MODELS	CO1	Understand the idea of slope of the lines, understand to find solution of Linear Systems by the Echelon Method and Gauss Jordan method.
			CO2	Understand the basic concepts of linear functions, solve system of linear equations using various methods, solve linear programming problems geometrically.
			CO3	Solve LP problems more effectively using Simplex algorithm and also explain duality theory.
	MTS5 D04	OPEN COURSE-4 MATHEMATICS FOR DECISION MAKING	CO1	Understand Various mathematical techniques involved in statistics enables to gather, analyze and draw inferences from the data around us, thereby enabling to make solid decisions.
			CO2	Understand various probability concepts and probability distributions are introduced to get a wider understanding on the application of statistics in decision making. distribution in inferential statistics.
			CO3	Student understands the standard normal distribution and learns the conversion of normal variable to standard normal variable
			plem	entary Course

1	MTS1C01	COMPLEMENTARY-1 MATHEMATICS - 1	CO1	To introduce students to the fundamental ideas of limit, continuity and differentiability and also to some basic theorems of differential calculus.
			CO 2	To understand how these ideas can be applied in the problem of sketching of curves and in the solution of some optimization problems of interest in real life.
			CO3	To learn integral calculus, which is motivated by the geometric problem of finding out the area of a planar region.
			CO4	To know some of the applications of Integral Calculus.
2	MTS2C02	COMPLEMENTARY-2 MATHEMATICS - 2	CO1	To represent points in polar coordinates and convert from one system to another and graphing in polar coordinates
			CO2	To find the derivatives and anti derivatives of hyperbolic and inverse hyperbolic functions and d the arc length and surface area of revolution using definite integrals
			CO3	To find the improper integrals, the limit of sequences, the integral using the trapezoidal rule and Simpson's rule and the convergence and divergence of series
			CO4	To solve a system of linear equations using matrix theory the rank and inverse of a matrix using elementary row transformations, the eigen values and the corresponding eigen vectors of a matrix and to check whether a matrix is diagonalizable or not.
3	MTS3C03	COMPLEMENTARY-3 MATHEMATICS - 3	CO1	To work on the idea of limit, continuity, and derivative of vector-valued functions
			CO 2	To understand the properties and applications of the gradient of a function and to evaluate curl and divergence of a vector field
			CO3	To learn the three important theorems: Green's theorem, Gauss's theorem, and Stokes's theorem and their applications
			CO4	To understand the definition and evaluation of complex integral and learn the fundamental results such as Cauchy-Goursat Theorem, Cauchy's integral formula , Liouville's theorem and the Fundamental Theorem of Algebra.
4	MTS3C04	COMPLEMENTARY-4 MATHEMATICS - 4	CO1	To learn the major classifications of differential equations, the conditions for the existence of solution of first and second order Initial Value problems and how to formulate a mathematical model of a physical process.
			CO2	To learn to solve the first order differential equations, a differential equation using Euler's method and second order equations with constant coefficients.
			CO3	To acquire the knowledge of solving a differential equation using the Laplace method, which is useful to deal with problems in engineering.

\mid			
CO 4	To familiarize with the Fourier series.		
	To learn the technique of solving partial differential equations using the method of separationof variables.		

